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Ruch's Principle of Decreasing Mixing Distance is reviewed as a statistical 
physical principle and its basic suport and geometric interpretation, the Ruch- 
Schranner-Seligman theorem, is generalized to be applicable to a large repre- 
sentative class of classical statistical systems. 
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1. I N T R O D U C T I O N  

With the concept of mixing distance Ernst Ruch has opened a new approach 
to the phenomena of irreversibility and organization in the physical sciences. 
The mixing distance is a generalization of the mixing character, which was 
originally introduced as a (partial) ordering on the set of partitions of a 
finite set (the diagram lattice), ~1'2) but was soon generalized to apply to 
spaces of distributions. Natural  fields of application are the chirality and 
isomery phenomena in chemistry, (1) the theory of representations of the 
symmetric group, (2) graph theory, (3) and statistical thermodynamics. (4 7) 
Considering the enormous scope of the notions of mixing character and 
mixing distance, one is readily convinced of their fundamental nature, 
which also becomes apparent  in their deep geometrical meaning as 
elucidated very recently by Ruch. (8) We therefore feel encouraged to accept 
the physical importance of Ruch's concept and to explore its implications. 

The irreversible evolution of complex systems toward some equilibrium 
state or toward some configuration of organization is generally described in 
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terms of an increase of entropy, or relative entropy (whenever an entropy 
can be defined). Ruch proposed to sharpen the criterion of (relative) 
entropy increase into the criteria of increasing mixing character, resp. 
decreasing mixing distance, thus strengthening the second law of thermo- 
dynamics for closed, resp. open, systems. The motivation for this Principle 
of Decreasing Mixing Distance is twofold. First, it indeed implies increase 
of (relative) entropy. Second, if one accepts the (linear) generalized master 
equation (9) as the general statistical description of the dynamics of 
macroscopic systems, then decreasing mixing distance (and not only 
increasing entropy) is a consequence. An even more stringent argument in 
favor of this principle is the reversed statement formulated in the Ruch- 
Schranner-Seligman (RSS) theorem. (1~ It is the purpose of the present 
paper to generalize this theorem so that it becomes applicable to a 
reasonably large class of statistical systems. 

We shall first review the Principle of Decreasing Mixing Distance and 
its foundations, the RSS theorem (Section 2). Next the generalized RSS 
theorem is formulated and proved (Section 3). Finally, as an example, the 
discrete case of that theorem is revisited and slightly extended (Section 4) 
and fields of potential applications are briefly outlined (Section 5). 

2. THE  PRINCIPLE  OF D E C R E A S I N G  M I X I N G  D I S T A N C E  

Rather than following the chronological development of the concept of 
mixing distance, we shall sketch a systematic, deductive presentation. We 
report very briefly some geometrical features and strongly recommend 
Ruch's fundamental work (8) as the original and thorough treatment. 
Following Ruch, (8) the mixing distance is a special instance of the direction 
distance, the latter being a formalization of the geometric concept of angle 
in real vector spaces with an arbitrary (not necessarily Hilbert type) norm. 
In short, an oriented angle is defined as an ordered pair ( Ix] ,  [ y ] )  of 
directions ( Ix]  = {ex ] c~ > 0 } for x v a 0). Generalizing Felix Klein's concept 
of congruence, two geometrical figures shall be called norm equivalent if 
there exists a linear transformation which maps one figure bijectively and 
isometrically onto the other one. Thus, pairs of oriented angles ( Ix] ,  [ y ] ) ,  
( [x ' ] ,  [ y ' ] )  are norm equivalent if they obey the following relations: 

H~x0-/~yoll--[/ctx~-/~y;ll W , / ~  R + 

Here z o means z/[kz[I for z vaO. Now one obtains a (partial) ordering of the 
equivalence classes of oriented angles, denoted d[x/y] ;~ d[x'/y'], via the 
system of inequalities 

!lC~Xo-/~yoll t> II~x;-  By;II  Vc~,/~e R + 
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The entity d[x/y] the direction distance (of x from y ) - -may  be identified 
with the function 

d[x/y]: ~+ +~+ ~ +  

(~, fl) ~-+ d[ x/y ](~, fl) = [l~Xo - flYo[[ 

As Ruch (8~ has shown, the direction distance has properties quite similar to 
those of a metric, which justifies the use of the term "distance." In fact, one 
readily verifies the following relations, which are in complete analogy to 
the distance axioms: 

(dl) d[x/y]>-d[z/z]; d[x /y]=d[z / z]  iff [ x ] =  [y ] .  

(d2) d[x/y] )> d[x'/y'] iff d[y/x] > d[-y'/x'] ("symmetry"). 

(d3) d[x/y] -< d[x/z] + d[z/z] + d[z/y] ("triangle inequality"). 

Note that d[z/z] plays the role of the null distance. It is crucial that the 
direction distance is not a mere number, but a function: this is a reflection 
of the fact that the above ordering of angles is no total ordering. It becomes 
a total ordering exactly if the underlying norm induces an inner product 
(via the polarization identity); this happens if and only if the familiar 
symmetry property holds: d[-x/y] = d[y/x]. In this way the familiar notion 
of angle for inner product (pre-Hilbert) spaces is recovered exactly if there 
is a group of linear automorphisms acting transitively on the norm unit 
sphere. In other words, the direction distance is the canonically generalized 
notion of a metric for (oriented) angles in the context of affine geometries. 

The direction distance is known under the name mixing distance in the 
case of a particular family of vector spaces relevant to statistical physics, 
namely vector spaces M = M((2, Z') of bounded a-additive signed measures 
on a measurable space (s 27). The set of all (positive) measures forms a 
proper convex cone M + in M generating M (such that M =  M + - M  +). 
Furthermore, the normalized (probability) measures form a convex subset 
S = M~ of M + and as such part of a hyperplane of M; S uniquely determines 
a positive linear functional e (the "trace," or "charge" functional): 

e: M ~ 0 ~  

x ~ e ( x )  := x ( ~ )  

such that 

S= {x~ M + le(x)= x(Q)= 1} 

[-We note that positivity of e means e (M+)~_~+ . ]  Now M becomes a 
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normed space in a canonical way by considering the convex hull of 
Sw -S ,  

M 1 = conv(Sw - S ) =  {~x-f ly tx ,  y~S,  ~, fl>~O, ~ + f l =  i} 

as the norm unit ball. The resulting norm is the Minkowski functional of 
M1 and satisfies 

x ~  I[x[ll =sup{x(A)[A ~X}- in f{x(A)[AEZ'}  = [xl (f2) 

(where Ix[ denotes the total variation of the signed measure x). It follows 
that on M + the norm [[.111 coincides with the trace e. We note that there 
exists a family of "measure-type" norms, including 11-[[ 1, all yielding the 
same equivalence and ordering relations for the oriented angles dip~q] 
between positive elements p, q ~ M + (measures t); this again emphasizes the 
relevance of the mixing distance in the measure-theoretic and therefore also 
in the statistical context. (11> In the following we restrict our attention to the 
norm [[. [11 given by the total variation (occasionally called 1-norm). 

The physical importance of the spaces M=M(~2,  X) is due to the 
possibility of interpreting measures from M § as distributions and 
normalized measures from S = M~ as probability measures. In the statistical 
context the set S of probability measures is referred to as the set of 
(statistical) states, defined on the phase space Q. A statistical state 
represents an ensemble of identically prepared macrosystems. An alter- 
native interpretation refers to the elements of S as describing the (average) 
distribution of macroscopic subsystems of a larger system over a reduced 
phase space (example: the Boltzmann one-particle distributions). In the 
sequel we shall refer to the first interpretation. The restriction of the 
direction distance dip~q] to pairs p, q from M~ is called the mixing 
distance. With respect to the geometrical interpretation, it is important to 
observe that there exists a semigroup of linear mappings ~b on M leaving 
S invariant [~ (S)  _ S]  and acting transitively on S. These linear mappings 
are positive [~b(M +) c M + ], trace-preserving (e o ~b = e), and therefore 
contractive (][q~x[[l~< I[x[[1, x sM); in the statistical context they are 
known as stochastic operators (linear state transformations). Henceforth 
the set of stochastic operators on M shall be denoted ST(M). Being 
contractions, stochastic operators lead to decreasing mixing distance, that 
is, if p'=~bp and q'=~q (p,q~S), then d[p/q]~d[p'/q']. The RSS 
theorem states basically the converse: 

T h e o r e m  2.1 (Ruch, Schranner, Seligman(m)). Let M =  M(g2, ~)  be 
one of the following normed spaces of finite signed measures: 

1. M =  M(g2, X) - ~n for (2 = {~ol ..... con}, X = ~(f2). 
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2. M=M(Y2, Z ) ~ L ~ ( [ 0 ,  1], dx) for s = [0, 13, Z =  ~3(f2), the Borel 
algebra on the space f2, dx = Lebesgue measure. 

Then the following statements for p, q, p', q' e S = M + are equivalent: 

(i) d[p/q];~d[p'/q']. 

(ii) There exists a stochastic operator q~ ~ ST(M) such that p ' =  ~bp 
and q' = qSq. 

In the proof, case 1 is considered as entailed by case 2. We shall return to 
this point in Section 4. 

It can be reasonably expected that the validity of the RSS theorem 
extends to more general spaces M(f2, Z). Indeed, in Section 3 we shall 
provide a generalization which makes the theorem applicable to a wide 
class of statistical physical systems. 

It is worthwhile recalling the special case of Theorem 2.1 referring to 
the mixing character. In the above two cases the space M =  M(,Q, Z) is 
such that it contains an element representing the uniform distribution 
u ~ M~- ; then the mixing character may be defined as 

m[p] = -dip~u] 

The entity m[p] represents a qualification of the similarity of a distribution 
p to the uniform distribution in the sense of a (partial) ordering 

m[p'];~m[p] iff Np-lull,>~llp'-lullm Vl>~0 

A stochastic operator ~ is called bistochastic if the uniform distribution u 
is an eigenvector: ~u=u. Then the RSS theorem entails the Hardy-  
Lit t lewood-Polya (HLP)  theorem: 

T h e o r e m  2.2 (Hardy, Littlewood, Polya/Ryff). Let M be as in 
Theorem 2.1. Then the following statements for p, p 'E  S are equivalent: 

(i) m[p ' ]~m[p] .  

(ii) There exists a bistochastic operator cb on M such that p'  = qSp. 

These theorems show the deep connection between the notion of angle 
in spaces of signed measures and the concept of stochastic operators. As 
mentioned in the introduction, the latter concept is fundamental to the 
general description of irreversible (stochastic) dynamics. In fact, in the usual 
description of classical statistical systems, observables are represented as 
(essentially) bounded functions on phase space O, that is, as elements of 
some space L~(s of /~-essentially bounded functions on f2, where 
((2, Z' ,#) is the underlying event space, # some measure on (f2, Z). 
[A more systematic approach which allows for a unified description of 
classical and quantum statistical systems identifies observables as 
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(normalized) measures on (~2, Z)  with range in the positive elements of 
M(s Z) ' . ]  Accordingly, taking into account the finite resolution of any 
measurement, statistical states are represented as absolutely continuous 
(with respect to #) probability measures on (g?,/~), that is, as positive 
normalized elements from M,( f2) -~LI( (~ ,#) .  In Section 3 a class of 
physically relevant measure spaces (g2, N,/~) will be specified to which the 
RSS theorem can be extended. Thus, the RSS theorem establishes a 
geometric interpretation of the dynamics (via stochastic operators) of 
macroscopic systems, which is summarized in Ruch's Principle. 

Principle of Decreasing Mix ing Distance. The evolution of a 

physical system always leads to a decrease of mixing distance with increasing 
time. The evolution of a closed system always leads to increasing mixing 
character. 

This Principle assumes the status of the second law insofar as it gives 
rise to a general characterization of irreversibility. The second law of 
thermodynamics follows if one takes into account that the inequalities 
d[p/q]>-d[p'/q'] (resp. m[p']>-m[p]) are equivalent to systems of 
inequalities f(p,  q) >>.f(p', q') [resp. g(p') >~ g(p) ]  for certain classes g)l~ 
(resp. ~ )  of convex functions in (p, q) (resp. p) containing relative 
entropy (resp. entropy). (4)'2 This equivalence furnishes the power of Ruch's 
Principle: it is obvious that these systems of inequalities entail much more 
information about (or impose stronger restrictions on) the possible 
dynamics on statistical state spaces than is provided by entropy alone. 

3. EXTENSION OF THE R U C H - S C H R A N N E R - S E L I G M A N  
T H E O R E M  

In this section we shall extend Theorem 2.1 to a wide class of measure 
spaces (g2, Z',/~). It  will be assumed that (g2, X, #) is a separable measure 
space with a a-finite measure #. The proof of our main result will be based 
on some facts from the theory of C*-algebras, which, for the sake of 
convenience, will be explained in some detail. 

We shall also sketch an alternative proof of the theorem by means of 
purely measure-theoretic means. To spell out all details would require a 
roughly equal amount  of space. The reason for our preferring the algebraic 
approach is that this procedure first is closer to the language of statistical 

2 We note that results of the general form of Theorem 2.1 (for n-tuples of states on an 
arbitrary commutative C*-algebra) were derived by Alberti and Uhlmann, (12) who, instead 
of our condition (i), require a set of inequalities for a family S0I~ of "h-convex" functionals. 
For the case of pairs of states our result is stronger, since it refers to a minimal set of h-convex 
functionals. 
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physics and second paves the way for extensions of the result to quantum 
statistical systems (to be treated in terms of noncommutative operator 
algebras). 

The extended RSS theorem states the following: 

T h e o r e m  3.1. Letf, g,f ' ,g'~Ll(~,S,#)~, where (t2, S,/~) is a 
separable, a-finite measure space. Then the following are equivalent: 

(i) d[f/g] ~d[f'/g'], d[f/g]: ~+ x ~+ --, ~+, (~, fi)~-+ I[~f-3gH1. 

(ii) There exists a stochastic linear mapping qsEST(L~(f2, L', kt)) 
such that f '  = Of and g' = r 

ProoL The implication ( i i ) ~  (i) is obvious. To prove the converse, 
we restrict ourselves for the present to the case of atom-free, separable, 
~r-finite measure spaces. A measure space is called atom-free if the quotient 
algebra ~3 = S,/A~ (the set of equivalence classes [ E ] ~  in S with respect to 
the a-ideal A~={A~XIp(A)=O}, [E]a ={AEXIAAE:=(A-E)w 
(E-A)~A~}) contains no atoms. We make use of the fact that the dual 
spaces L~(s S , # )  and L~( [0 ,  1], dx) of the complex Banach spaces 
L~(t'2, S,/z) and L~([0, 1], dx) are W*-algebras which are isomorphic to 
each other in the case of atom-free measure spaces. (Henceforth we shall 
omit the subscript C, as it is evident from the context whether the complex 
or the real spaces are referred to.) In subsequent lemmas we shall provide 
an explicit construction of such an isomorphism which, together with its 
inverse, is normal. This enables us to deduce the implication ( i ) ~  (ii) by 
application of the corresponding implication of Theorem 2.1. 

Let i:L~(12, S,~t)~L~([O, 1],dx) be a normal isomorphism and 
i i its normal inverse. Then the transposed mappings i' and (i i), are 
positive, linear isometries satisfying i '(LI([0, 1], dx))cLl(s S,t~) and 
(i-1) ' (L~((2, S,/z)) c LI([0, 1], dx). [Here, as well as in the following, we 
implicitly consider the space LI(f2, S, ~t) as embedded into its second dual 
in the canonical way.] Now assume (i):/l~f-/~gll i > I[~f'-/~g'll 1 W,/~ > 0. 
Then for )7=(i  1),f, f f= ( i -1 ) ,g ,  y , = ( i - 1 ) , f , ,  and ~ ' = ( i - ~ ) ' g '  (all 
in Ll([O, 1],dx)), one has ~?--flg=(i-1)t(~f--flg) and a97'--fl~'= 
(i 1),(~f,_flg,) and therefore [since (i 1), is an isometry] 

liar- MII 1> l ia r ' -  M'II ~ v~,3>0 

According to Theorem 2.1, there exists a ~ S T ( L I ( [ 0 ,  1],dx)) such 
that j7,=~)7 and ~ ' = ~ .  But this yields f'=i'~7'= [i'~(i 1),](f) 
and g'=[i'~(i-l)'](g), which means f ' = ~ f  and g'=q~g with 
~ ST(L~(s S, ~t)). 

The extension of this result to the case of measure spaces containing 
atoms will be based on Lemma 3.6, which states that one can embed a 
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separable, a-finite measure space (~2, S, #) into an atom-free, separable, 
a-finite measure space (f2, 5,/~)- Thus, it is possible to apply the isometries 
i', (i 1), which guarantee the existence of a stochastic operator 
~ e S T ( L l ( O , ~ , f i ) ) .  By the second part of Lemma 3.6, ~ induces a 
stochastic operator ~b' e ST(LI(s X, #)). In this way the validity of the 
implication (i) =~ (ii) is transferred from L~(~, 5,/~) to LI(f2, Z, #). QED 

Now we shall proceed to construct a normal isomorphism i between 
the W*-algebras L~((2, S , # )  and L~([0 ,  1],dx). For this purpose we 
need the following: 

I . emma 3.2. Let (f2, X, #) be a a-finite measure space. Then there 
exists a faithful representation (~,L2(f2, X,#)) of the W*-algebra 
L~(f2, S, #), that is, a *-isomorphism z~ from L~176 S, #) onto an Abelian 
von Neumann algebra ~d in Lf(L2(s S, #)). Furthermore, 7r can be chosen 
bicontinuous with respect to the a(L~176 S, #), LI(~'-2,~ y', #))- and the 
a-weak [-i.e., the a(sJ,  &~ S, # ) ) , ) - ]  topologies. 

ProoL To every ~oeL~(g2, Z',#) an operator Mo:L2(f2, X,#)--+ 
L2(g2, Z', #) can be assigned which is uniquely determined by the (#-almost 
everywhere) pointwise equality M ~ f =  ~of for fEL2(~, ~, #). Thus, one 
can define a mapping 

~: L~(g2, X,#)- ,  sJ= {Mol~oeL~ S,#)} 

(p ~ 7r(~o) = M r 

Obviously, sg c ~(L2(~?, S, #)), lr is a bijection satisfying: 

(i) ~(~q) + riO) = ~rc(q~) + fire(O), V~o, ~ e L~~ L', #), V~,/3 e C. 
(ii) ~(~o0)=rc(~o)~(0),  Vq~, r 1 7 6 1 7 6  

(iii) r~(qS)=rc(~o)*, V~oeL~176 S, #). 

Properties (i) and (ii) are obvious, and (iii) follows from 

(M~of, g)= f (~0f) # d# = "f(--~)) dp=(f, Mcog) 

Thus (zr, Lz(s S, #)) is a *-representation of the W*-algebra L~(~2, N, g). 
Furthermore, ~ is strictly positive, which implies ker~ = {0} and 
finally I1~(~0)11=[1~olloo for all ~oeL~(f2, Z,#). Consequently, n is a 
*-isomorphism. 

Next we shall prove that rc is a normal representation 
(~'(Y(L2(O, S, # ) ) , ) cL~( f2 ,  S, #)), i.e., z is a-weakly continuous. Then 
Proposition III.3.12 of ref. 13 ensures that d=z~(L~176 S , # ) )  is a 
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von Neumann algebra. Let {%} cL~(f2,X, #) be a ~(L~176 
L~(~, Z', #))-converging net, that is, there exists q~eL~(s X, #) such 
that { f ,~0~-cp>~0  for all fELI(g2, X,#). Then one has to prove 
that (p, lc(cp~)- ~z(cp)> ~ 0 for all p e Y(L~(f2, X,#)) . .  For each 
p e 5q(L2(f2, Z', #)) . ,  there exist sequences {~.} and {t/.} in L2(f2, Z', #) 

oO 2 oo with Zn=l II~nll~< +oo and Zn=t I1~,,11~< + ~  such that p has the form 
p = Z ~ c o ~ o , , .  [Here co:,, is the linear functional given by co~,,(a)= 
(~,atl) for a in L,e(L2(fLZ',#)).] Therefore, applying the Lebesgue 
dominated convergence theorem, 

<p, ~(%)- ~(~o) > 

= ~ (~, (Me-M~o)q.) 
n = l  

= I~ d~ g(x)[~o~(x) - ~o(x)] 

= (g, ~o~-~o) ~0 

which converges to zero, since the function g defined by g(x)= 
~2.~1 ~.(x)t/,,(x)is in L~(f2, s #): 

;~ ,gl d~ ~< ~ (,~1, I~1)~ < i ,l~,12 II~.ll~ 
n = l  n = l  

oo \ 1/2 ] 2 \ 1/2 

\ n =  1 n 1 

Here we made use of the Cauchy-Schwartz inequality for L2(g2, X, #) 
and l 2. 

Finally, we have to prove that also ~ 1 is a-weakly continuous, 
i.e., (rr 1), (Ll(g2, Z', #)) = ~(p(L2(~Q, ~', # ) ) , .  Let {M~o.} c d be a net 
which converges ~-weakly to M ~ :  { p , M ~ - M ~ o ) ~ 0  for all 
p s~(L2(D,  2, #)). .  We have to show that { f  ~ ~(Mo.)-~c-~(M~)> ~0 
for any f e  Ll(f2, Z', #). Every function f e  Ll(g2, Z', #) can be represented 
as f(x)=((x)r/(x) with ~(x), rl(x) sL2(f2, X,#). Thus, for each 
fsLl(f2, X, #) there exists a functional coe,,~ Lf(L2(g2, Z',/~)). such that 
{fO>={co~. , ,g(~, )> for all OeL~(~2, X,#). Therefore, we have 
<f cp~-<o>=<~,~,M~o -M~o>~O. QED 

Next we shall make use of the fact that the measure space (D, Z', #) is 
supposed to be atom-free. 

822/61/1-2-21 
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[ . emma 3.3. Let (f2, 22, #) be an atom-free, o--finite measure space. 
Then the yon Neumann algebra d = ~(L~176 22, #)) c LP(L2(~2, 22, ~)) 
given by Lemma 3.2 contains no minimal projections (atoms). 

Proof. We shall prove that the W*-algebra L~176 27, #) contains no 
minimal projection. This implies that ~ '  contains no minimal projection for 
the following reason. The *-isomorphism ~ of Lemma 3.2 induces a lattice 
isomorphism between N(sJ)  and <S, A, -1, 1), the projection lattice of 
~ and the complete lattice of projections in L~(fL27,/~). A lattice 
isomorphism is order preserving in both directions, and therefore 
L~(D,  27, #) contains no atoms if, and only if, sJ  contains no atoms. 

Let A~={Se~I#(S)=O}. The classes [A]~ :={B~XIAAB-  
A - B u B - - A s A , }  form a Boolean algebra (the quotient algebra 
~3 -- { [A]~,  ]A e 27} = 52/A~ under the following Boolean lattice operations: 
~ [ A ] ~  = [ f 2 - A ] ~ ,  [ A ] A , ~ [ B ] ~  = [ A r a B l e , ,  and [A]~ w [B]~ = 
[A w B ] ~ .  By assumption, the Boolean lattice <~3, c~, -n, 1 ) contains no 
atoms. 

Now let 

()~A denotes the characteristic function of A) and 

The set ~" is a Boolean algebra under the following lattice operations: 
7,~ ^ 2B--2AT, S=~,A~B, ;~A V ;~--;~A +)~B--ZAZS= 2'A~B, and -I )~A-- 
I - - ~ ,A= f ,~  A" NOW the mapping i :~ - - ,~ f ,  [E]~,,~-')?E is a lattice 
isomorphism, so that together with the lattice <~, ~ , -7 ,  ]>, also the 
lattice <X, A, -n ,  1)  contains no atoms (by the same arguments as 
above). But by construction 5f can be identified with the projection lattice 
of L~~ 27, #), so that this algebra--and therefore d---contains no mini- 
mal projections. QED 

The following theorem presupposes the separability of the measure 
space (12, 22, #). [A measure space (12, X, #) is called separable if the 
associated metric space (22(#), p) is separable. Here 27(#) denotes the set of 
all elements of finite measure in s and the metric p on 27(#) is given by 
p(E, F)= #(E AF).] We recall that the Banach space LP(12, Z, I ~) (p < o0) 
is separable if, and only if, (27(#), p) is separable (ref. 14, p. 177). This 
guarantees the separability of the Hilbert space L2(12, 27, #) provided the 
measure space (12, 2;',/~) is separable. This enables us to apply Theorem 
III.1.22 of ref. 13: 
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Theorem 3.4. Let .~' be an Abelian von Neumann algebra on a 
separable Hilbert space. If d contains no nonzero minimal projection, then 
sr is isomorphic to the algebra L~(0,  1 )=  L* ( [0 ,  1], dx) of all essentially 
bounded functions on the unit interval (0, 1) with respect to the Lebesgue 
measure. 

This theorem implies the following important result: 

Corollary 3.5. Let (g2,27,#) be a a-finite, atom-free, separable 
measure space. Then there exists an isomorphism between the W*-algebras 
L~176 s #) and L~(0,  1). 

It remains to prove that the isomorphism i: L~176 ZT,/~) ~ L ~ ( 0 ,  1) 
from Corollary 3.5 and its inverse i 1 are normal, i.e., i'(Ll(O, 1 ) ) c  
LI(12, X,/I) and (i-~)'(L~(f2, S,l~))cLl(O, 1). These statements can be 
derived from the following commutative diagram: 

i 
L ~ ( O , r , ~ )  , , L ~ ( 0 , 1 )  

i - I  

.11.  .iT.  
r 

d , , ~7 
c ~9~(LZ(.Q, X, [0) m ~g.CC(L2(O, 1)) 

n, z? are isomorphisms given as in Lemma 3.2 and i denotes the 
isomorphism from Corollary 3.5. Thus , = ~ o i o r c  -1- d - ~ 7  and 
r -  1 = ~ o i -  1 o ~ 1 : ~7 ~ M are isomorphisms between the yon Neumann 
algebras d and ~7. Then Corollary III.3.10 of ref. 13 ensures the a-weak 
bicontinuity of ~, r 1. As shown in Lemma 3.2, zc and z7 are bicontinuous 
and these facts imply that both i and i-1 are normal. This completes the 
construction of a normal isomorphism. 

Now we shall sketch the purely measure-theoretic proof of Theorem 3.1 
mentioned in the beginning of this section. This proof rests on the fact that 
an atom-free, separable, a-finite measure space (~2, Z', ~) is isomorphic to 
the Borel-Lebesgue measure space ([0, 1], ~B([0, 1]), v) on the real unit 
interval; that is, there exists an isomorphism i: _ r ~  ~B([0, 1]), and #o i -1  
is equivalent (in the sense of absolute continuity) to the Lebesgue measure 
v. This follows from a series of lemmas of Halmos. (~4) 

A family of measure spaces of particular interest are those for which 
Z=~3(f2)  and (/2, ~3(f2)) is a standard Borel space. (A standard Borel 
space is, by definition, isomorphic to the Borel space of a Polish space. A 
topological space is called a Polish space if it is homeomorphic to a 
separable complete metric space.) This covers, for instance, all metric 
spaces ~ and, in particular, the spaces /2 = Nn equipped with the usual 
Borel algebra. Now a standard Borel space is either countable or 
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isomorphic to [-0, 1] (ref. 13, Corollary A.11). The countable case will be 
discussed in Section 4. Here we consider the latter possibility. Hence there 
exists a Borel isomorphism q~: f2-~ [0, 1] which induces an algebraic 
isomorphism i: ~3((2) ~ ~3(0, 1) via i(B)= q)(B). 

Returning to the general case, using the above isomorphism i, one may 
construct a positive, isometric, linear mapping 

j: M,(O)-LI((2, 27, #)~Mv(O, 1)--LI([-0, 1], v)-Zl(0, 1) 

for deriving the assertion of Theorem 3.1 by application of the RSS 
theorem. Here M,(O) [resp. M~(0, 1)] denotes the vector space of all finite 
signed measures on 27 [resp. ~3(0, 1)3 which are absolutely continuous with 
respect to # (resp. v). The elements of M~((2) are precisely the signed 
measures #f whose Radon-Nikodym derivatives are elements f of 
L1(g-2, 27, #): #f(B)--fBfd#; in this sense the vector space M,(s is 
isomorphic to the space L1((2, X, #). To every #f ~ M~(s we can assign a 
signed measure #1oi-1 on ~3(0,1). Any #y6M~(t-2) is absolutely 
continuous with respect to the measure #, and #oi  -1 is absolutely 
continuous with respect to v. Consequently, the signed measures #y o i - '  
are absolutely continuous with respect to v. Then the Radon-Nikodym 
theorem states that there exists a unique function g in LI([0, 1], ~(0, 1), v) 
such that 

#yoi-l(E)=fEgdv, E e  ~B(0, 1) 

Therefore we have #foi-l~Mv(O, 1) for any #f~M~(s Using the 
equivalence of #oi  ' and v, we can prove the converse: VgoieM~(f2) for 
any vgsMv(O, 1). Thus, it is possible to define a linear bijection 
j: M~(12) --. My(O, 1), #f ~ #f ~ i -1. That j, j-1 are isometries follows from 
the fact that both j and j -1  being "trace-preserving," positive, linear 
mapping, are contractions. Now one proceeds precisely as in the first proof 
of Theorem 3.1 by application of the positive isometry j. 

Now it remains to extend the result to the case of measure spaces 
containing atoms. 

L e m m a  3.6. Let (O, Z, #) be a separable, a-finite measure space 
containing atoms. Then there exists a separable, a-finite, atom-free measure 
space (~,/~) and an embedding of the a-algebra s into the a-algebra ~. 
Furthermore, every stochastic mapping q ~ S T ( M z ( ~ ) )  induces in a 
canonical way a stochastic mapping r ST(M~(27)). 

ProoL First, we shall construct an embedding of 27 into ~. Due to 
the a-finiteness of #, the a-algebra 27 contains at most countably many 
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atoms 9.1 := {P~}~N [ 0 < # ( p i ) <  ~ ] .  [Here we assume that # is strictly 
positive (VA ~ 2:, A ~ ~ :  if(A) > 0) because the quotient algebra ~ - S/A~, 
guarantees this property.]  Any measure can be decomposed uniquely into 
a sum # = #~ + #p, where #~ is continuous and #p is a pure point measure. 
The measures #p, resp. #~, vanish on (2~ := ~2-sup 9.I, resp. sup 9.1. Let 27(92) 
be the atomic a-algebra generated by 92 and X(12~) the smallest (r-algebra 
which contains the set ~ := {EeZ'IE__s It is not difficult to see that 
S(s contains no atoms. Thus, every EeX can be decomposed into a 
union E=E~uEp of an element EeeX((2c) and Ep~27(92), where Ep is 
defined by Ep := U {pilp~e 92E}, 92E = E~ 92. The a-additivity of # implies 

N 

#(E) = #c(Ec) + #p(Ep) = #c(Ec) -}- 2 #p,(Ep (~ Pi) 
i=1  

for N = # 92 and all E e 27. The entities #p~ denote measures on the Boolean 
algebras 3~= {Pi, ~Z~} given by 

~11p(Pi), Xi = Pi 
#~(x~)  :=  ~0, x~ = 

Let 

t3 becomes a Boolean (r-algebra under the lattice operations -7 E =  
((2c-Ec, {Pi--X~}i~U), Enr=(EenFc ,  {Xf~xF}i~N), and similarly 
E w F. The ~r-algebras ~, X are isomorphic because the mapping 

\ i~N / 

defines a a-isomorphism. Similarly, a (r-algebra can be defined on the set 

:= {(Ee, {E,},~N)/E~ e S(g2~), N =  #N, Eie ~(0, 1)} 

~(0, i) denotes the quotient algebra of the Borel algebra with respect to 
the Lebesgue measure. R can be embedded into ~ in virtue of the mapping 

(~: ~ " ' ~ ,  E~-(Ec,  {xi}i~N)}--~(Ec, {q~i(Xi)}i~N) 

where ~o~: {p~, ~ }  ~ {[0, 1], Z }  with ~o~(pe)= [0, 1], ~p i (~)=0 .  Now, 
(~,/~) becomes a measure space by the measure 

N 

fi: ~ - + R + ~ { + ~ } ,  fi(E)=#(E~)+ Z #L(E~) 
i ~ l  
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(#z denotes the Lebesgue measure)./3 is a a-additive, a-finite measure, and 
the measure space (~,t3) is separable because the measure spaces 
(22(s 03(0, 1),/zL) have this property. Obviously, ~ contains no 
atoms. Now it remains to prove that every ~b~ST(M~(~)) induces a 
~b'eST(M~(X)). Recall that M~(~)  denotes the space of finite signed 
measures on (~,/3) [Mz(~)~L~(~ , /3 ) ;  V v s M ~ ( ~ )  ~fsLl (~ , /2 ) :  

.11_ N f=L Z,=,f,,  v(E)=~<Ldu<+Ex=~I~,fid~]. The range of the 
embedding cp defines a a-subalgebra ~ := ~0(!~) of ~ (i.e., q~ is a bijection 
of s onto 0). Every signed measure v e Mz(~)  induces a signed measure 
on (0,/x) when restricted to the a-subalgebra 0. On the other hand, it is 
possible to assign to every signed measure ~TsMz(~}) a function f~ such 
that ~ is of the form 

N 

i = 1  " [0,1 ] 

for all E e  0, where c~i(g)e R. Obviously, f~eLl(~ ,  #) and g=  Vy~l ~. Now 
we are able to prove that every stochastic operator q~ e ST(M#(~))  induces 
in a natural way a stochastic operator ~ e S T ( M # ( ~ ) )  according to 
~g :=(cbvfo)i ~. Obviously, ~ is a positive, trace-preserving mapping. 
Linearity follows from the equations 

~(,7~ + ,7~) = (~vs~ ' +~)I ~ = ('Pvs~, +s~)~, = (r + @v/o~)l 

By definition, a positive, trace-preserving, linear mapping ~ is a stochastic 
+ N operator. Obviously, the measures /~o~o=#~ Z~=,#L ~ and 

# = / ~ + ~ N = m # p ,  are equivalent and therefore one can apply the 
Radon-Nikodym theorem to introduce a bijective, positive isometry 
h:M~,(Z)~MF,(~), #fb-.-~#fo(~9 -1. Thus, $ ~ S T ( M ~ ( ~ ) )  implies that 
~b' := h-~$h e ST(M~(22)). In this way every (b ~ ST(M~(~)) induces a 
q)'6 ST(M~(Z')). QED 

This completes the proof of  Theorem 3.1. 

4. T H E  R U C H - S C H R A N N E R - S E L I G M A N  T H E O R E M  
FOR T H E  D I S C R E T E  CASE 

In this section we will indicate how Theorem 3.1 (or, equivalently, the 
original RSS theorem) applies to spaces M(O) of finite signed measures on 
a discrete measurable space (s 22). A measurable space (s X) is called 
discrete if 22 is generated by an at most countable set of atoms; in that case 
f2 can be chosen to be countable or finite, Z '= 2 2, and M(s My(D), 
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where v denotes the counting measure on f2. Thus we are basically dealing 
with M(f2)~_ ~", the goal of the original RSS theorem, (~~ and M ( f 2 ) ~ l  1, 
the sequence space equipped with the 1-norm. The identity M ( ~ ) =  M~(f2) 
already shows that Theorem 3.1 applies to the case of discrete measurable 
spaces, since (O, 22, v) is a separable, a-finite, atomic measure space. But 
for physical applications it is nevertheless rewarding to carry out in some 
detail the discretization procedure inherent in Lemma 3.6; this method will 
turn out to coincide with the well-known coarse-graining technique of 
statistical mechanics. As a by-product, coarse graining can be understood 
in terms of stochastic operators themselves. In the light of the generalized 
RSS theorem, this shows the striking geometric features of irreversibility. 

Let (f2, Z, #) be a separable measure space with # being a a-finite, 
atom-free measure. Then there exists a (finite or countable) family 
F={o)~},~, in 22 of subsets of f2 with #(coj)<o�9 Q)j~IOOj=~'~, and 
cojc~co~= ~ for all iCj. Let X(F) denote the smallest a-subalgebra of Z 
containing F [-thus, S(F)=2 r] and M(F) [ = M u ( F ) ]  the space of finite 
signed measures on 2;(F). Every function f e  L~(O, 2;, #) induces a signed 
measure fif on 2;(F) according to 

fly(E)= ~ #f(co~), Eel(F) (thus fiy=#iIz(r)) 
o J  i ~ E 

On the other hand, every signed measure f E M(F) can be defined by a 
family {v~(f)},~/, vk(f)e ~, where Y'.k~ Ivk(f)l < OO. Define a piecewise 
constant function on f2: 

f~(x):=Vk(f)/f~,k d# if xeco k 

Obviously, f~ e L'(f2, 2;, #) and f = #z~l 2(r). Then one easily realizes that 
a stochastic operator q~eST(M,(f2)) reduces in a natural way to a 
stochastic operator ~ e ST(M(F)) according to the following: 

Interpreting f2 as the phase space of a physical system, the reduction of the 
measurable space (s 2;) to (F, X(F)) corresponds to a partitioning into 
finite cells. The identification of the elements from M(F) with piecewise 
constant functions in LI(f2, X, #) can be represented by means of a 
stochastic mapping gt on M.(f2) [resp. on Ll(f2, 2;, p)]: for #fGM.((2), 
f s  L~(f2, 27, #), put 

}P#f(E) := ~ #(E ~ o9i) #f(ooi)/#(coi) 
i~I 
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Thus 

gtf(x)=t~f(ooi)/#(e)i) if xeco i 

Now the range of ~ in M,(O) is isomorphic to M(F). Let O:M(F) 
~UM,(O), 6) 1 denote the corresponding positive, trace-preserving 
(stochastic) isometries. Then the above canonical relation between 
stochastic operators on M~(O) and M(F) can be summarized as ~ := 
6)-1o ~ o ~ o O .  Moreover, interpreting 05 as a dynamical mapping on 
M~(s then ~ is nothing but the canonically associated coarse-grained 
"image" dynamics on M(F). Being the composition of several stochastic 
operators of which at least one (7 s) is not an isometry, it is clear that 
is itself no isometry. On the contrary, it can be considered to be "more 
mixing" than the original dynamics ~b. In this way we have interpreted 
irreversibility introduced by means of coarse graining in terms of stochastic 
operations. 

5. C O N C L U S I O N :  POSSIBLE FIELDS OF A P P L I C A T I O N S  

In the introduction we mentioned a number of research areas where 
the notions of mixing character and mixing distance provided new insights 
into natural phenomena as well as mathematical structures. Having 
extended the scope of the Ruch-Schranner-Seligman theorem to a fairly 
large class of L 1 spaces, we shall conclude this paper by indicating by 
means of two examples how the Principle of Decreasing Mixing Distance 
governs the statistical description of dynamical evolution processes. 

First we briefly sketch the general features of population dynamics as 
it occurs in biological ecosystems, chemical reactions, laser physics, or 
molecular evolution. ~ This yields an example for the finite discrete case 
of the RSS theorem. The phenomena mentioned above admit various 
approaches for a quantitative description going beyond the basic level of 
reaction equations. One may, for instance, formulate rate equations for the 
occupation numbers corresponding to a finite number of states (excitation 
states, species). In certain circumstances such reactions are Markov 
processes governed by a stochastic matrix of transition probabilities. But in 
general one is dealing with nonlinear phenomena, that is, nonlinear 
equations for the respective phase space trajectories. Then the RSS theorem 
suggests adopting a statistical level of description, i.e., ascribing occupation 
probabilities to the occupation numbers and trying to write down evolution 
equations for the probability distributions. It turns out that even when one 
starts with a nonlinear (stochastic) dynamical equation, the resulting 
induced statistical evolution is a linear process. This phenomenon is well 
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known in the context of the second example discussed in Section 4, phase 
space statistical mechanics. 

The probabilistic representation of the nonlinear Hamiltonian 
dynamics yields the linear Liouville equation, the solution of which is given 
by a group q~t of isometric stochastic operators; thus, in that case the 
mixing distance for arbitrary pairs of probability measures is time 
invariant. Irreversibility occurs only on the macroscopic level of a 
simplified description in terms of coarse graining: in that case one 
introduces a phase-space cell partition and formulates evolution equations 
for the time development of probability measures defined on the resulting 
discrete event space. The resulting irreversible dynamics is represented as a 
stochastic semigroup ~t.  This is an instance of the RSS theorem applied to 
countable discrete measurable spaces. 

To reemphasize, a most remarkable aspect of dynamical processes 
brought into perspective by considering the Principle of Decreasing Mixing 
Distance is that in principle any nonlinear evolution equation can be 
represented by a family of linear stochastic operators acting on the 
probability distributions defined on the original phase space. This may turn 
out to be the starting point for practical applications of the Principle in the 
description of general features of complex phenomena of organization. Its 
.fundamental importance, however, is rooted in its geometrical characteriza- 
tion of irreversibility. 
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